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Kinematics of homogeneous axisymmetric 
turbulence 
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(Received 30 May 1994 and in revised form 14 June 1995) 

It is shown that the expressions for the correlation tensors of homogeneous ax- 
isymmetric turbulence can be considerably simplified compared to previous analyses 
of Batchelor (1946) and Chandrasekhar (1950). Representations of the axisymmet- 
ric two-point correlations tensors are found, such that each measurable correlation 
corresponds to a single scalar function, and moreover such that the equations of 
continuity relating different tensor components to each other take the most simple 
form. Reflectional symmetry in planes normal to but not in planes through the axis 
of symmetry is demanded, which allows a full description of states with rotation 
about the axis of symmetry. The second and third-order velocity correlation tensors 
and the first-order pressure-velocity correlation tensor are analysed with the new 
method. Small separation expansions of the correlation functions yield the quantities 
which have to be measured to determine various terms in the governing equations for 
the Reynolds stresses and the dissipation tensor. A scalar Poisson equation for the 
pressure-strain is derived, and the single-point solution is written as a sum of inte- 
grals over measurable correlation functions. The simplified analysis can be of great 
experimental importance. It reveals in a simple way how a full experimental picture of 
homogeneous axisymmetric turbulence can be obtained by measuring components of 
the velocity at two points at variable distance from each other on a line perpendicular 
to the mean flow in a wind tunnel. By using the Fourier-Bessel transform it is also 
shown that the three-dimensional energy, transfer, and pressure-strain spectra can be 
extracted from such measurements. 

1. Introduction 
The study of axisymmetric turbulence is particularly interesting since it is the 

simplest form of turbulence in which effects of pressure-strain, anisotropy distribution 
among different scales and return to isotropy can be studied. It is relatively easy to 
realize in a wind tunnel experiment and is attractive from a theoretical point of view 
because of its simplicity. 

The investigation of how different correlations relate to each other under the sym- 
metry constraint is fundamental to the theory of axisymmetric turbulence. Batchelor 
( 1946) analysed the second-order two-point correlation tensor 

(1) Rij(x, U) = (ui (x)uj (x + r ) )  

for the case of homogeneous axisymmetric turbulence using the method of invariants 
expounded by Robertson (1940). Homogeneity means that R is independent of 
position x and also implies the index symmetry (Batchelor 1946) 
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Rij(Y) = Rj&Y). (2) 

The continuity equation for incompressible fluids implies that R is solenoidal with 
respect to both its indices, 

Using these two properties of R,  Batchelor showed that in the case of axisymmetry R 
can be expressed as 

R;j = rirjA + dijB + AAjC + (Airj + A,ri)D, (4) 

where I is the unit vector in the symmetry direction and A,  B, C and D are scalar 
functions of r = I Y I and p = r . I / r ,  coupled by the two equations (Batchelor 1946, 
equations (2.14) and (2.15)) 

aA 1 d B  p a B  aD 1-p2i3D 
4A + r- + - - - - - + p- + ~ - = 0, 

ar r ar  r2 ap dr r dcL 
( 5 a )  

i d s  ac i - p z a c  dD 
+ 4 D + r - = 0 0 .  

ar 
-- + p - + - -  
r a p  ar y aP 

The representation (4) of the axisymmetric form of R is found by a straightforward 
application of the method of Robertson (1940). 

Chandrasekhar (1950) developed a method based on the idea of writing an ax- 
isymmetric solenoidal tensor as the curl of a general axisymmetric skew tensor, i.e. 
a reflectionally non-invariant tensor. By using this method he could explicitly write 
R in terms of only two scalar functions Q1 and Q2. The relations between these two 
functions and Batchelor’s four functions are (Chandrasekhar 1950, equations (50)) 

(6a)  

(6b) 

(6c) 
( 6 4  

A = (Dr - Dpp)Q1+ DrQ2, 

C = -r2D,,Q1 + (r2Dr + 1)Qz, 
D = ( r ~ D p  + 11DpQ1- r~DrQ2,  

B = [-(r2Dr + rpD, + 2) + r2( 1 - p2)D,, - rpD,]Q, - [r2(1 - p2)Dr + l]Q2, 

where 

Chandrasekhar also applied this type of formalism to the third-order two-point triple 
correlation tensor and wrote it in terms of six scalar functions, with the differential 
operators in (7) operating on them. 

It is rather intricate to get a deeper insight from Batchelor’s representation into 
how various correlations between different velocity components exactly relate to each 
other. None of the four functions of (4) alone represents a correlation which can be 
individually measured. The form of equations (5a,b) admits no explicit solution for 
any pair of the four functions in terms of the other pair. Despite the mathematical 
elegance of Chandrasekhar’s representation the problem becomes even worse if we 
consider (6a-d) instead of Batchelor’s equations. 

The question is now if any simpler representation of axisymmetric turbulence can be 
found, and the answer is ‘yes’. The axisymmetric correlation tensors can be represented 
by scalar functions corresponding to correlations which can be individually measured, 
and the equations of continuity can at the same time be considerably simplified. This 
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will be clear in the case of the first-order pressure-velocity correlation tensor, the 
second-order velocity correlation tensor and especially in the case of the third-order 
velocity correlation tensor, which would be difficult to analyse using either the method 
of Batchelor or the method of Chandrasekhar. 

Batchelor (1946) and Chandrasekhar (1950) analysed axisymmetry including total 
reflectional symmetry. This excludes states with rotation. Here we will take the more 
general approach of only demanding reflectional symmetry in planes normal to the 
symmetry axis, which allows rotation about the same axis. 

1.1. Experimental background 
This work is mainly motivated by experimental needs. To determine the two com- 
ponents of the axisymmetric dissipation tensor, measurements were performed in the 
new wind tunnel of KTH (Royal Institute of Technology). For this purpose two hot- 
wire cross-probes simultaneously measured two velocity components at two points 
at variable distance on a line perpendicular to the mean flow. By using Taylors’s 
hypothesis in the mean flow direction it was possible to construct two-dimensional 
correlation surfaces whose curvatures could be estimated at the origin. An automatic 
traversing system made it possible to organize relatively long series of measurements 
without any human interference. The question emerged of how much information 
can be extracted from such measurements. Is it possible to determine not only the 
components of the dissipation tensor but also the different terms in the dynamical 
equation for this tensor, if similar measurements of the triple correlations can be 
carried out? Is it possible to obtain full three-dimensional energy and transfer spectra 
from such measurements, to be compared with results from direct numerical simu- 
lations (DNS) or from dynamical two-point modelling? Is it possible to solve the 
Poisson equation for the pressure-strain in terms of correlation functions which can 
be obtained by such measurements? The answers to these questions are in general 
affirmative, as we shall see, and the present analysis gives the relations between the 
measurable correlation functions and the various quantities of fundamental interest. 
These relations, which would be very complicated to derive using either the method 
of Batchelor or the method of Chandrasekhar, have already proved to be valuable 
for the analysis of the ongoing experiments in the wind tunnel at KTH (A. Johansson 
& T. Sjogren, Private communication). Such experiments are not only crucial when 
answers are sought to fundamental questions of turbulence, such as Kolmogorov’s 
hypothesis of isotropy of small scales, but can also be of great importance for valida- 
tion of single-point turbulence models designed for technical use, such as the model 
of the rapid pressure-strain by Johansson & Hallback (1994). The new analysis opens 
a door to measurements at high Reynolds numbers of quantities such as the rapid 
pressure-strain, which formerly have only been evaluated at low Reynolds numbers 
by use of DNS (see for example Lee & Reynolds 1985). 

In this context it is also interesting to note that a lot of theoretical and com- 
putational work has recently been performed on homogeneous turbulence subjected 
to mean rotation. Cambon & Jacquin (1989) used a phenomenological two-point 
closure to make a detailed investigation of three-dimensional spectral energy transfer 
in this type of turbulence. Bartello, Metais & Lesieur (1994) investigated coher- 
ent structures and two-dimensionality of rotating turbulence by DNS. Johansson, 
Hallback & Lindborg (1994) analysed the difficulties associated with mean rotation 
in single-point modelling. These works are only some examples of the efforts which 
have recently been made in this field, efforts which make it an urgent task also to 
perform experiments on this type of turbulence. That such experiments can indeed 
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FIGURE 1. A rotation is invariant under reflection in a plane normal to the axis of rotation, but not 
in a plane parallel to the axis of rotation. 

be carried out has recently been shown by Jacquin et al. (1990) and Leuchter & 
Dupeuble (1993). In the present analysis the skew tensors which are needed for a 
description of a flow with mean rotation are included. The inclusion of these tensors 
enables the experimentalist to use the present analysis in exactly the same way in 
the case of rotating turbulence as in the non-rotating case. With the same type of 
experiments the same things can be achieved in the two cases. 

Homogeneous axisymmetric turbulence is the first test case for hypotheses on 
general effects of anisotropy. Experiments on this form of turbulence are of great 
interest. A simple and concise outline of the kinematics of homogeneous axisymmetric 
turbulence is therefore needed. It is the ambition of the present work to fill this need. 

2. Axisymmetry 
A homogeneous axisymmetric physical state is invariant under rotations around 

axes that are normal to a plane, and invariant under translations along the same 
axes. In the following we will need a unit vector A which is normal to the given plane. 
There are two possible directions of I .  In an experimental situation we can fix I 
with reference to some external direction in the experimental environment. In a wind 
tunnel experiment on homogeneous axisymmetric turbulence we can define I as the 
unit vector in the mean flow direction, but the opposite direction would do just as 
well. In the case of turbulence in a rotating container, as for example the apparatus 
in the experiment of Ibbetson & Tritton (1975), we can define 3, as either of two 
possible unit vectors aligned with the axis of rotation. 

In the definition of axisymmetry we include reflectional symmetry in planes normal 
to I ,  but not reflectional symmetry in planes containing 1. The last type of reflectional 
symmetry is broken if there is rotation about A, while this is not true for the first type 
(see figure 1). When both these symmetries occur we will say that we have ‘strong 
axisymmetry’ in distinction to the weaker type of symmetry which is the case if there 
is rotation about I .  

Turbulence obeying the weaker, but not the stronger kind of axisymmetry can 
be generated by letting a rotating fluid pass through a grid. The fluid can be set 
in rotation by keeping it in a rotating apparatus, which could be a section of a 
wind tunnel, as in the experiment of Jacquin et al. (1990), or a container, as in the 
experiment of Ibbetson & Tritton (1975). A homogeneous field is probably most 
easily produced in a wind tunnel. Depending on whether the measuring instrument 
takes part in the rotational motion or not, it can most appropriately be described 
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either as a system rotation or a mean flow rotation. In the first case the rotation enters 
into the turbulence dynamical equation as a Coriolis term, and in the second case as 
a mean flow gradient term. In each mode of description the rotational term breaks 
the reflectional symmetry in planes parallel to 1 (axis of rotation), but not in planes 
normal to 1. Hence, if there is nothing else in the experimental configuration that 
breaks any axisymmetry condition, including reflectional symmetry in planes normal 
to 1, then the generated turbulence will obey the weaker, but not the stronger kind 
of axisymmetry. Here we will restrict ourselves to describe rotation as a rotation of 
the mean flow. 

3. Second-order correlation tensor 
According to the method of invariants? the nth-order two-point correlation tensor 

of homogeneous axisymmetric turbulence can be represented by a sum of all linearly 
independent nth-order tensors that can be formed from the separation vector r 
between the two points which we denote by 0 and P ,  the unit vector 1, the Kronecker 
tensor and the permutation tensor cijk. Each of the tensors multiplies a scalar which 
is only a function of the length of r and the angle between r and 1. In order to find 
the most convenient representation of the second-order correlation tensor we form 
the orthogonal unit vectors 

where p =I r x 1 1. These relations can also be expressed in Cartesian tensor notation, 
using the permutation tensor. The vector r is not defined as a position vector 
of a single point with reference to an origin in a coordinate system, but as the 
separation vector between two measurement points in the turbulence field, and thus 
it is coordinate-system independent, i.e. it is a true vector. Since e(’) and d2) are 
obtained by vector multiplications of Iz  and r ,  they are also vectors. 

From the three unit vectors 1, e(l) and d2) it is now possible to form nine independent 
second-order tensors, each of which can be multiplied by a scalar function. By virtue of 
the index symmetry condition (2) only six of the scalar functions will be independent. 
If we apply this condition the second-order correlation can be represented as 

(2) ( 2 )  (1) (1) Rij(r) = AiAjRl(p, Z )  + ei ej R2(p, Z)  + ei ej R3(p,z) 

+iiey)h(p,z) - ej2’njh(p, - 2 )  + Aiey)Sl(p, z )  - eI1)AjSl(p, - z )  

(9) (2) (1) (1) (2) +ei ej &(P,  2 )  + ei ej &(P,-z), 

where R1, R2,. . .S2 are scalar functions and z = re1  . Rather than r and p we have 
chosen p and z as the arguments of our scalar functions. R1,& and R3 are even 
in z owing to the symmetry condition (2). In Appendix A the two-point velocity 
correlation is represented in dyadic notation. Here we have adopted Cartesian tensor 
notation in order to keep close to most classical works on turbulence. Each of 
the scalar functions in (9) represents a correlation between two measurable velocity 
components. Let u,u and w be the axial, radial and azimuthal velocity components, 
that is the components in the directions of IZ,d2) and e(l) respectively, as shown in 

t The basic idea behind this method is given in Appendix A, where dyadic notation is adopted, 
instead of Cartesian tensor notation. A good presentation is also given by Batchelor (1953). 
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FIGURE 2. Reflection in a plane normal to the direction of symmetry. 

figure 2. Then 

RI == (u (O)u(P) ) ,  R2 = (u(O)u(P)) ,  R3 = (w(O)w(P)), R4 = (u(OMP)) ,  

s1 = (u(O)w(P)), s2 = ( u ( O ) w ( P ) ) .  
(10) 

Reflectional symmetry with respect to a plane normal to 1 means that we can reflect 
the separation vector Y and all the velocity components in this plane without changing 
R .  1 is chosen, with reference to some external direction, as one of two possible normal 
unit vectors to a plane. We can think of it as a vector being rigidly attached to an 
experimental apparatus and thus it must be kept fixed during the reflection. Let the 
subscript 'm' indicate the mirror image in the normal plane of A through the point 0, 
as in figure 2. Clearly we have u, = -u,u, = u and w, = w. By reflecting we find 

&(P, Z )  = (u(O)u(P))  = ( u m ( O ) v m ( P m ) )  = -&(P, -z) ,  

SI(P,Z) = ( 4 O ) w ( f ' ) )  = ( u m ( O ) w m ( p m ) )  = -SI(P,--Z), 

&(P, Z )  = ( u ( O ) w ( P ) )  = ( u m ( O ) w m ( p m ) )  = S ~ ( P ,  -z) .  

(11) 

(12) 

(13) 

The corresponding relations for RI ,  R2 and R3 are consistent with the fact that they 
are even functions of z .  The same relations are obtained by reflection in any plane 
normal to 1. The correlation tensor can now be written 

R,,(Y) = A,I,,R~ + + e11)ey)R3 + (A,eY) + 
+(i,ey) + A,et'))S1 + (el2)ej') + ey)eI'))S2. (14) 

Reflectional symmetry in a plane containing the axis of symmetry, for example 
the (1,r)-plane implies that SI and S2 are zero, which must be the case if there 
is no rotation about the axis of symmetry. All reasoning about reflectional sym- 
metry can of course be carried out without any reference to velocity components. 
To see that a reflection in the (I,e('))-plane has the same effect on R as a re- 
flection in the (1,r)-plane we note that e(')(r,) = -ei)(r,,,) and d2)(r , )  = e',2)(vm) 
where the subscript 'm' now indicates the mirror image in either of these two 
planes. 
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The non-skew part of (14) can be rewritten in the same form as Batchelor's 

(15a) 

representation (4). To do so, substitute into (14) the identities 
( 1 )  ( 1 )  - 6. .  - 2 2 .  - e!2)e(,2) 

e i e ' - f J  J I ]  I 1 7  

The relations between the first four functions of (14) and A , B , C  and D can also 
be found by projection of (4) onto suitable combinations of two of our three unit 
vectors. This gives 

} (16)  
R1 = r2p2A + B + C + 2 r p D ,  R2 = r2( 1 - p 2 ) A  + B,  

& = r2p(  1 - p 2 ) 1 / 2 A  + r(1 - p2)1 /2D.  R3 = B,  

The skew part of (14) can be rewritten in terms of tensors including a single permu- 
tation symbol, the Kronecker delta and the two given vectors Y and A. 

From simple symmetry arguments, R,, R2, R3 and S2 must be even in p while & 
and S, must be odd in p. By a function being even or odd in p we mean a function 
whose Taylor expansion contains only even or odd powers of p. The evenness of 
for example Rl is analogous to the evenness of the function f ( r )  of the isotropic 
correlation tensor (see 53.1). Let R;(x ,  z )  = (u(O,O)u(x, 2 ) )  be the measured correlation 
in a Cartesian laboratory frame system with origin at 0, with z in the direction of the 
axis of symmetry and u the velocity component in the same direction. Then, assuming 
axisymmetry, it is obvious that R' must be even in x. Identifying R with the measurable 
correlation tensor it is also clear that for non-negative x we have R;(x , z )  = Rl(x,z). 
The evenness of R1 in p now follows by changing x to p. The corresponding properties 
of the other correlation functions can be derived in the same way. 

When applying the continuity condition (3) we use the following relations: 

The last relation is of course only true if the operator acts on functions of only p and 
z .  The continuity condition (3) applied to (14) yields 

Equations (19a,b) are equivalent to Batchelor's equations (5a,b). 

3.1. Isotropic case 
Isotropy can be looked upon as a special case of axisymmetry, in which 3, becomes 
a unit vector in an arbitrary direction. For isotropic turbulence R can be written 
(Karman & Howarth 1938, see also Hinze 1975) 
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where f and g are related by 

1 df 
2 dr 

g = f + -r-- .  

Here urm, is the root-mean-square of any velocity component. The relation between 
R1,. . . & and f and g in the isotropic case can be found by projection of (20) onto 
the four orthogonal tensors corresponding to each of R1,. . . R4 , 

It can readily be verified that both equations (19a) and (19b) in this case reduce to (21). 

3.2. Single-point limit of R 

The single-point limit can be considered as a special case of the limit when Y becomes 
parallel to 3, . In this limit e(') and e(2) are not defined and R must become a tensor 
that can be written only in terms of 3, and the Kronecker tensor. This can only be 
obtained if R2 = R3 and & = S1 = S2 = 0, when p is equal to zero. The second and 
third terms of the correlation tensor will turn into the desired form by virtue of (15a). 

Considering the symmetries of the correlation functions we obtain for small sepa- 
rations, 

R2 - R3 N p2, & - PZ, S1 N PZ, S2 - p2. (23) 

3.3. Fourier analysis of R 
First we define the Fourier-transform of R in the standard way, 

Rij(k) = - Rij(r) exp (-ik -r)d3r. ' S  h 

@.I3 
The spectrum tensor 6 is, just as R ,  determined by three separate components, with 
the difference that the continuity condition is much simpler to apply in Fourier space. 
To determine fi we choose the three components 

J"I" P R ~  cos (k,z)Jo(k,p) dz dp, (25a) 
h 1.l .R.. = - 

(2.12 0 
1 J EJ 

h 

1.6. k R.. - -- /ml" pSlk, sin (k,z)Jl(k,p)dz dp. 1 Jmn m n 1J - 
0 

Here J, is the nth-order Bessel function (see Appendix B). In (25b) we have used 
equation (194. 

In a wind tunnel we can identify the z-direction with the direction of the mean flow. 
If we make use of Taylor's hypothesis which states that for low turbulence intensities 
the z-transformation can be replaced by a transformation in time of a measured 
signal, then equations (25a,b) imply that the full three-dimensional energy spectrum 
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for axisymmetric turbulence without rotation can be determined by a simultaneous 
measurement of two velocity components u and u at two points at variable distance 
to each other on a line perpendicular to the mean flow. In the case with rotation 
equation (25c) implies that we must also measure u and w simultaneously. These 
measurements can be carried out by two hot-wire cross-probes, one of them fixed 
and the other one traversing a line perpendicular to the mean flow. 

4. Helicity 

helicity tensor can be defined as 
Helicity is defined as the correlation between velocity and vorticity. The two-point 

(26)  Hij(r)  = (u j (0 )wj (P) )  = ej,,--&,(r). 

AS seen from (14) we not only have Rij(-r)  = Rji(r) but also Rij(-r) = Rij(r), owing 
to reflectional symmetry in the planes normal to A. It follows that Hij(r) = -Hij(-r) 
and consequently 

a 
arm 

Hij I r = ~ =  0. (27)  

Hence the single-point correlation between velocity and vorticity is zero for homoge- 
neous axisymmetric turbulence. 

5. Dynamical equation for R 
The dynamical equation for R can be written (Hinze 1975) 

a a 
ari arj 

n , ( r )  = -Pj(r) - -Pi(-r), 

Eij(r) = - 2 v v 2 ~ i j ( r ) .  (294 

Mikj(r) = (ui(O)uk(O)uj(p)), (30) 

(31) 

Here T is the transfer tensor, M is the two-point triple correlation tensor 

n is the two-point pressure-strain tensor, P is the pressure-velocity correlation tensor 
1 

e Pi(r) = - (p (O)u i (P) ) ,  

and E is the two-point dissipation tensor. Taking the single-point limit of equation 
(28) we obtain the Reynolds stress transport equation. 

In the following we will study each of the terms in (28) and formulate them in 
terms of scalar functions, paying special attention to the problem of which quantities 
can be measured. 
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6. Mean flow gradient term 
In the case of axisymmetry the mean flow gradient has the form 

(32) 

where a is the rate of strain along the direction of symmetry and Q is the rate of 
rotation about the symmetry axis. The mean flow gradient term in the dynamical 
equation can now be expressed as 

a UI 
ax, 

~ = $ ( 3 A I A 5  - &) - Q€,,,A,, 

___ a u k A ~ 5 1 J ( r )  = A1AJ[(-2~ + 09)R1] + ey)ej?)[(a + o B ) R ~  + 4QS21 
8x5 

( 1 )  ( 1 )  +el e, [(a + 09)R3 - 4QS2] 

+(A,ej?) + AJer2))[(-ia + a g ) h  + 2 0 ~ ~ 1  

+(Ale:') + AJe:I')[(-to + og)sl - 2 0 ~ 4 1  

( 3 3 )  ( 2 )  ( 1 )  ( 2 )  ( 1 )  +(ef ej f ej e, )[(a + 0 9 ) S 2  + 2Q(R3 - R2)], 

where we have introduced the differential operator 

i a  a 9 = -p -  - z - .  
2 a p  az (34) 

The effect of the strain on the correlation functions is twofold. On the one hand it acts 
as a source or sink, depending on the sign of a and which of the correlations is being 
considered. On the other hand it acts as a deformer of the correlation functions by 
virtue of the differential terms which are zero in the single-point limit and therefore 
conservative. The rotational terms are all zero in the single-point limit and therefore 
conservative as well. They introduce a coupling between the proper tensor terms and 
the skew tensor terms, showing that the skew tensors really are needed to describe 
axisymmetric turbulence subjected to mean rotation. The correlations S1 and S2 are 
not generally zero if there is a rotation about the symmetry axis. 

7. Dissipation tensor 

expressed as 
A straightforward calculation shows that the two-point dissipation tensor can be 

The Fourier-transform of E is by standard Fourier analysis 

(36) 
h 7 -  
E . .  = 2 ~ k ' R . .  

I J  11' 

showing that the full three-dimensional dissipation spectrum can in principle be 
measured in the same way as the previously outlined measurement of the three- 
dimensional energy spectrum. 
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7.1. Single-point limit of E 

From (23) and (35) it can readily be shown that in the single-point limit there are two 
non-vanishing components of E , corresponding to the two non-vanishing components 
of R .  In order to express these components in terms of the curvatures at 1 r (= 0 of 
the non-vanishing correlations we expand 

189 

From (19a,b) it now follows that 

Y = PI, P 3  = P2,  a3 = 3a2 - p1 (38) 

(39) 

(40) 

Equivalent results, but in different form, were derived by Batchelor (1946) and 
Chandrasekhar (1950). The two single-point components of E can be determined by 
measuring two velocity components, either u and v or u and w, on a line perpendicular 
to the mean flow. By making use of Taylor's hypothesis in the z-direction it is possible 
to construct the two-dimensional surfaces R1 and R2 or R1 and R3 from the measured 
data, and from them estimate the curvatures at 1 r I= 0 . With a very accurate 
measurement it is of course sufficient to determine these functions on the z and p 
axes only, but since the measurement involves some difficulties and since with the 
same effort we can obtain the whole of the correlation surfaces it seems nevertheless 
to be a better procedure to estimate the curvatures from the entire surfaces. 

and 

;liAj&ij Ir=o = -2vV2R1 Jr=o= 4V(2c(l + pi),  
i ( S i j  - A i A j ) ~ i j  Ir=o = -2vV2(R2 + R3),.=0 

= 4v(4a2 4- 1 2  -pi)  = $v(4a3 + 3p3 +pi ) .  

In the case of isotropy the functions f and g can be expanded as 

(41) 

where A here is the Taylor microscale. From equations (22a-d) it is seen that when 
axisymmetry turns into isotropy 

(42) 

This indicates that for cases which are not too extreme R3 is a steeper function of 
p in the neighbourhood of zero than R2 is, which implies that the best conditioned 
choice is to measure R1 and R2 . 

p 1 = a 2 = u - ,  2 1  p 2 = c I 1 = p 3 = a 3 = u - .  2 1  

2 2  22 

8. Triple correlation tensor 

indices and solenoidal, 
The third-order two-point triple correlation tensor M is symmetric in the first two 
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in the last index. In the axisymmetric case this tensor can be represented in a similar 
way to the second-order tensor, 

M ~ ~ ~ ( Y )  = A ~ ~ L ~ A ~ M ~  + ei2)ef)AjM2 + ei')ef)iljM3 

+iil.key)M4 + eI2)efie(f)M5 + e!')e;)ey)M6 

+(;lief) + ;lkef2))AjM7 + (;lief) + ;lpz!'))e;2)Mg 
+(;lief' + &ei (1) )ej (1) M9 + (ei2)ef) + ef)e:'))ey)Mlo 

+diikey)NI + ei (2) ek (2) ej (1) N2 + ei (1) ek (1) ej (1) N3 

+(;lief) + &e!'))A,N4 + (Lief) + Ikej1))ey)N5 

+(ei2)ef) + ef)ei1))AjN6 + (lief) + ikei'))ey)~7 

+(ei ek + ek ei )ej (44) 
By demanding reflectional symmetry in the normal plane of ;Z we can conclude that 
M4, Ms, M6, M7 and Mlo are even in z, while the rest of the M-functions are odd in 
z. Reflectional symmetry also implies that N1, N2, N3, N4 and Ns are even in z while 
N5, N6 and N7 are odd in z .  The N-terms are skew-tensors and must therefore be 
zero in the case of strong axisymmetry. From symmetry arguments we can, as in the 
case of the second-order correlation, conclude that some correlations are even and 
some are odd in p. In fact it turns out that triple correlations that are even in z 
are odd in p and vice versa. This can also be seen from the following argument.? 
If we demand that M shall be continuously differentiable at the origin, each of the 
terms in (44) must be even in p. The vectors el and e2 are odd in p, so the scalar 
functions multiplying an odd number of these two unit vectors must be odd and the 
functions multiplying an even number must be even in p. By inspection we find that 
the functions multiplying an even number of the two unit vectors are odd in z and 
the functions multiplying an odd number are even in z .  We can now conclude that all 
the triple correlations and all their even-order derivatives are zero in the single-point 
limit. 

Using (17) and (18) it is straightforward to derive the following equations from the 
continuity condition (43) : 

(2) (1) (2) (1) (2)N 
8. 

We notice that the N1 term alone fulfils the condition (43). 

t The author wishes to thank Magnus Hallback for giving him this argument. 
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8.1. Single-point behaviour of M 
All the even-order derivatives of the triple correlations are zero in the single-point 
limit. It is possible to show that the single-point first-order derivatives of the first ten 
non-rotational correlation functions are zero as well. 

Since M1,  M2, M3, M8 and M9 are odd in z their first-order single-point derivatives 
with respect to p are zero and since M4, Ms, M6, M7 and Mlo are odd in p their first- 
order single-point derivatives with respect to z are zero. Let X I  and z' be Cartesian 
coordinates with z' in the direction of I .  From the condition of homogeneity we have 
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The distinction between differentiation with respect to p and z and differentiation 
with respect to x' and z' is important here. The first type of differentiation involves a 
variation of the relative positions of two points, while the second type of differentiation 
involves a variation of the position of a single point. In a similar way we can show 
that 

(48) 
a a 

a z  aZ - [ ~ M s  + M2]r=0 = - [ZMg M3 ]r=o = 0, 

These relations are compatible with the continuity equations (45a-d) only i f  the first- 
order derivatives of each of the correlation functions are zero, which easily can be 
verified. In a similar way we can show that the single-point first-order derivatives of 
each of the N-correlations are zero except for N2 and Ng for which we can only show 
that 

a 
-"2hJs + N2Ir=0 = 0. 
a P  

To determine various terms in the single-point equation of E we have to measure 
single-point third-order derivatives of the triple correlations. In order to clearly see 
how these derivatives are related to each other we make the expansions 

( 5 W )  
(51c,d) 

( 5 k f  1 
( 5 k 1 h )  
(51i,j) 

2 M I  = a1z3 + blzp2 + . . . , M2 = a2z3 + b2zp + . . ., 
M3 = a3z3 + b3zp2 + . . ., M4 = c4p3 + d4pz2 + . . ., 
MS = C 5 p 3  + d5pz2 + . . . , M6 = C 6 p 3  4- d 6 p Z 2  

M7 = c7p3 + d7pz2 + . . . , Mg = agz3 + bgzp2 + . . ., 
M9 = a9z3 + bgzp2 + . . . , Mlo 

. . . , 

p 3  + dlopz2 + . . . . 
From equations (41a-d) we have the following relations: 

bl = -4c4, a1 = -- :d4, 

1 
~ 1 0  = 2 ~ 5  + 5b2 = -2~6 - ib3 , 
dlo = ds + $a2 = -d6 - pa3 
a9 = ag, b9 = 3bs + 2d7. 
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Axisymmetry requires that M2 is equal to M3 when p is equal to zero, so that 

a2 = a3. (53 )  

There are twenty expansion coefficients in (51a-j). In (52a-d) there are eight inde- 
pendent equations relating these coefficients to each other, and (49) gives one extra 
relation. Hence there are eleven independent single-point third-order derivatives of 
the triple correlations in strongly axisymmetric turbulence, whereas there is only one 
for isotropic turbulence. In the isotropic case the triple correlation tensor can be 
written (Karman & Howarth 1938, see also Hinze 1975) 

Here k(r) is the triple correlation between three velocity components all oriented in 
the direction of r. For small separations k can be expanded, 

k = z r  +.... 
The relation between the coefficients in (5la-j) and this single coefficient z when 
axisymmetry turns into isotropy is readily found to be 

( 5 5 )  
3 

8.2. Transfer tensor 
For homogeneous turbulence the transfer tensor 1 is zero in the single-point limit 
(Batchelor 1946). Its role is essentially to transfer energy from large to small scales. 
It is a second-order tensor that fulfils the index symmetry condition (2). In the 
axisymmetric case it can thus be written in terms of six scalars two of which are zero 
in the case of strong axisymmetry, 

Tij(r) = LiljT, + ei ( 2 )  ej (2) 7 ' 2  + e, (1) ej ( 1 )  T3 + ( L d 2 '  + Ajei2')Tq 

+(IZiej (1) + Ajei'))U1 + (ej2)ey) + ejz)ei1))U2. 
L l  

(57) 

A straightforward calculation shows that 
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Equation ( 4 5 4  has been used to reduce formula (58d). The trace of the Fourier- 
transform ? of T is the well-known ‘transfer-function’ which in the case of isotropic 
turbulence gives us a picture of the nonlinear ‘cascade’ of energy from large to small 
scales. In axisymmetric turbulence we have in the single-point limit two directions, 
the longitudinal which is parallel to 3, and the transverse which is perpendicular to 1. 
The two corresponding diagonal components of ? describe the nonlinear transfer of 
energy within each component. Since T is equal to zero in the single-point limit, each 
component of ? will integrate to zero and thus ‘conserve energy’. It is interesting to 
see that both these components can be expressed in terms of correlations that are 
indeed possible to measure : 

+ M5 cos (kzz)@34J2(k,p) - J o ( k p P ) )  + ik,Jl(k,P)l 

- M7kZp cos (k,z)Jo(k,p) + Msk,k,p sin (k,z)Jl(k,p)] dz dp. (59b) 

For the derivation of (59b) we have used (45b) and (454. 
If we identify the M-functions in (59a,b) as the measurable correlations 

Mi = (u (o )~ (o )u (P) ) ,  M2 = (v(o)v(o)u(P)), M5 = ( v (o )u (o )u (P) ) ,  } (60) 
M7 = (u(o)o(o)u(p)) ,  M8 = (u(o)v(o)u(P)), 

we see that if we again use Taylor’s hypothesis for the transformation in the z- 
direction, it is sufficient to simultaneously measure u and v at two points at variable 
distance on a line perpendicular to the mean flow to determine the transfer spectra. 
The transfer spectra and the energy spectra can thus be determined from the same 
measurement. 

9. Pressure terms 

vector), 
The pressure-velocity correlation tensor P is a first-order solenoidal tensor (or 

api 
- =o.  
dri 

In the axisymmetric case it can be written in terms of three scalar functions, 

Pi(v) = A;Pl + ej2)P2 + el”Q1, (62) 

where Q1 is zero in strong axisymmetry. The symmetry constraints require that P2 

and Q1 are even in z and odd in p and that PI is odd in z and even in p. Hence P is 
equal to zero in the single-point limit. The last term in (62) automatically fulfils the 
continuity condition while PI  and P2 are coupled by the equation 

a aP1 -(pP2) = -p-. 
d P  d z  
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The two-point pressure-strain tensor occurring in the dynamical equation can be 
expressed as 

In the single-point limit there is only one independent component of n. This 
component is responsible for a transfer of energy between the longitudinal and 
transverse velocity components. 

9.1. Single-point limit of Z l  
From the dynamical equation and the continuity condition the Poisson equation for 
the pressure-velocity correlation tensor can be derived, 

In the case of axisymmetry two independent scalar equations can be derived from 
(65), one for the non-rotational part of the pressure-velocity correlation ( P I  or P2) 
and one for the extra rotational part (Q1).  Here we are mainly interested in the first 
part since it is the one which contributes to the non-vanishing component of n in 
the single-point limit. Projecting (65) onto 1, using (32),  (19a) and (44) and taking 
the partial derivative with respect to z we obtain 

where 

The meaning of o and R is given by (32)  in 96. The boundary condition is of course 
that P1 and all its derivatives vanish as I Y I+ 00. The solution of this equation can 
be found from the method of sources, 

Taking the single-point limit of (68) we obtain 

where r = (p2  + z2)1/2 . Dividing this expression into a 'rapid' part and a 'slow' part 
we obtain after partial integration, 
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+z(3p2 - 2z2)F2M2 + 2p(4z2 - p2)rV2M7] dz dp. (70b) 
Here we have used that, on the basis of symmetry, M2 is equal to M3 when p is equal 
to zero. By virtue of the continuity relations, each of the integrals can be expressed 
in alternative ways (see Appendix C). The terms in the slow pressure-strain integral 
are grouped in such a way that each of them can be shown to integrate to zero in the 
isotropic case. 

Close to the origin the triple correlations are of O ( r 3 ) ,  which shows the convergence 
of the slow pressure-strain integral. The lowest-order term in (70a) will integrate to 
zero which easily can be shown by a change to spherical coordinates. This shows 
the convergence of the rapid pressure-strain integral. The small-scale contribution to 
the integrals will grow quadratically with the distance from the origin, if we integrate 
from zero and outward in both the variables. Small errors in the correlations at small 
scales should therefore not have any disastrous effects on the integrals. On large 
scales there is a damping factor of O ( r - 2 )  for the rapid part, and for the slow part 
a damping factor of O ( r P 3 ) ,  multiplying the correlations in the integrands. This may 
be sufficiently well-behaved for an experimental determination of the pressure-strain 
integrals. 

To determine the purely strain-related part of the rapid pressure-strain it is sufficient 
to measure u simultaneously at two points at variable distance from each other on a 
line perpendicular to the mean flow. This can be done with two single hot-wire probes. 
To measure the rotational part of the rapid pressure-strain we have to measure u at 
one point and w at another point. This can be carried out with one single and one 
cross-probe. 

To see what is required to measure the slow pressure-strain we identify the functions 
which must be determined as 

(71)  I M1 = (u (o )u(o )u(p ) ) ,  M2 = ( ~ ( O ) ~ ( O ) U ( P ) ) ,  

M3 = ( w ( O ) w ( o ) ~ ( p ) ) ,  M7 = ( u ( O ) v ( o ) ~ ( P ) ) .  

Each of these correlations can be measured by two hot-wire probes, one fixed cross- 
probe and one single probe traversing a line perpendicular to the mean flow. It is 
also possible to measure all of them at the same time, using two cross-probes. In the 
mean flow direction we again use Taylor's hypothesis. 

9.2. Pressure-strain spectrum 
The Poisson equation for the pressure-strain can also be solved in Fourier-space, 
giving us the pressure-strain spectrum. Taking the Fourier transform of (66) we 
obtain after partial integration 

-2Q&k,, sin (k,z)Jl(k,p)] dz dp, 

+M2ki 4 sin (k,z)[Jo(k,p) - J2(kpp)l 

+M3k,p-' sin (k,z)Jl(k,p) + M7k,kz2 cos (k,z)Jl(k,p)] dz dp. (72b) 

Here we have used the fact that Mz = Mj when p is equal to zero. 
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10. Single-point equations for R and E 

It is now straightforward to derive equations for each of the scalar functions defining 
R .  Projecting the dynamical equation (32) onto the six orthogonal tensors formed 
from the three unit vectors we obtain six equations of which three are independent. 
Here we restrict ourselves with stating the single-point equations for R and E . The 
two non-vanishing components of R are R1, = (uu) and Rh = R30 = (uu )  = ( w w ) .  
The two corresponding components of E, (39) and (40), we denote by &lo and ~ 2 ~ .  The 
single-point equations are 

-- - -2oR1, - &lo + aR1, 
at 

- = aR20 - ~2~ - aR2, 
at  

- - 2 ~ ~ 1 ~  - 2va[V29Rllr=o 8% 
a t  
-- 

-4v2[V4R1Ir=o - 2v v2 7-1 + 2- [ ( z)lr=03 

(73) 

(74) 

(75) 

a E2o 

at 
__ = a ~ 2 ~  - 2vo[V29i(R2 + R3)lr=0 

where 9 is the differential operator defined in (34). It should be possible to measure 
each of the terms in (73) and (74). The dissipative term and the pressure-strain term 
in each of the two equations are surely somewhat difficult to measure. Which of these 
two is the most difficult to measure we can only find out by experiment. In equations 
(75) and (76) it is clear that the destruction terms must be very difficult to measure. 
To determine these terms experimentally would require a measurement of the single- 
point fourth-order derivatives of the correlation functions. There are six independent 
fourth-order derivatives of the purely axisymmetric correlation functions, of which 
two are mixed derivatives. This can be seen from the symmetries of the correlation 
functions and from equations (19a,b). A direct determination of these derivatives 
must be considered as almost impossible with experimental techniques used today. 
The mean strain-related terms can be measured in the same way as the dissipative 
terms in (73) and (74), and it is possible that the time derivatives in (75) and (76) can 
be measured with some accuracy as well. Whether or not it is possible to measure 
the single-point Laplacian of the transfer term and the pressure-strain term is hard 
to say. This would require a measurement of single-point third-order derivatives of 
the triple correlations. Since all lower-order derivatives are zero we cannot exclude 
the possibility of measuring these terms with some accuracy. 

If we make the expansion 
s1 = spz + . . . (77) 

it is possible to express the right-hand sides of (75) and (76), except for the destruction 
terms, in terms of expansion coefficients which have been defined for the correlation 
functions. This has already been done for &lo and -52, in (39) and (40), and consequently 
for the first right-hand-side term of each equation. The other terms can (except for a 
multiplying factor) be expressed as 

(78) V29R1 (r=o = -4(al - PI), 



1 1. Summary and conclusions 
A representation of two-point correlation tensors of homogeneous axisymmetric 

turbulence has been found, such that each measurable correlation corresponds to a 
single scalar function, and moreover such that the equations of continuity take the 
most simple form. Apart from reproducing known results in a simpler and more 
comprehensible form, such as the expressibility of the dissipation tensor in terms 
of four expansion coefficients corresponding to the Taylor microscale of isotropic 
turbulence, the analysis produces a number of new results. The two-point triple 
correlation tensor is analysed, and it is proved that the leading-order terms of the 
triple correlations are of 0 ( r 3 )  for small separations. From symmetry arguments 
and the equations of continuity it is deduced that the number of independent single- 
point third-order derivatives of the axisymmetric triple correlations is eleven, and the 
relations between these and the relevant terms in the equation for the dissipation 
tensor are stated. A scalar Poisson equation for the pressure-strain is derived, and 
the single-point solution is written as a sum of integrals over measurable correlations. 
This is perhaps the strongest result, since it suggests that the rapid pressure-strain and 
the slow pressure-strain can be individually determined by a direct measurement. In 
general it is argued that the axisymmetric correlations can be determined by measuring 
components of the velocity at two points at variable distance from each other on 
a line perpendicular to the mean flow in a wind tunnel. Using the Fourier-Bessel 
transform it is shown that the three-dimensional energy, transfer and pressure-strain 
Fourier spectra can be obtained by such a measurement. 

Despite the improvement of theory all the hard work is yet to be done. Although 
the new analysis illuminates some qualitative aspects of the dynamics of axisymmetric 
turbulence, such as the crucial role of the skew correlations when rotation is present, it 
deals almost exclusively with the kinematical problem. The more difficult dynamical 
problem is left for the future, and so is the task of experiment. It is our hope 
that this work will stimulate experimental progress in the field of turbulence. The 
analysis offers some tools to experimentalists interested in the fundamental questions 
of turbulence, such as Kolmogorov’s hypothesis of isotropy of small scales. It is indeed 
a vast challenge to investigate the decay and the return to isotropy of turbulence 
downstream of an axisymmetric contraction in a wind tunnel, to determine the 
pressure-strain and the dissipation tensor, to study the transfer of energy between 
components and the distribution of anisotropy among different scales, and to further 
investigate the effects of rotation on all these quantities. 

The author wishes to thank Tony Burden, Magnus Hallback and Arne Johansson 
for stimulating discussions on the subject of axisymmetric turbulence and valuable 
criticism of earlier versions of this article. He also wishes to thank the referees who 
devoted so much of their time to scrutinizing the manuscript and suggested a number 
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of valuable improvements. Financial support from the Swedish Research Council for 
Engineering Sciences is gratefully acknowledged. 

Appendix A. The method of invariants and dyadic representation of the 
axisymmetric two-point correlations 

A dyad (see for example Gibbs 1948) can be formed as the tensor-product or 
outer-product between two vectors. Dyads form a vector space of dimension 32 = 9, 
and are thus second-order tensors. The only difference between dyads and traditional 
tensors is in notation. A dyad can be multiplied with a vector, either from the left 
or from the right, using either the dot- or the cross-product. The cross-product gives 
us a new dyad and the dot-product gives us a vector. A dyadic representation of the 
second-order velocity correlation tensor is very natural, since it is formed as the mean 
value of the tensor-product between two velocity vectors, 

R = (u(O)u(P)) .  (A 1) 

R = R(r ,A) ,  (A 2) 

The axisymmetric two-point correlation dyad can be written 

where Y and A are defined as in 93. Again it is important to remember that Y is 
defined as a separation vector between the two points 0 and P ,  and not as a position 
vector of a single point, and thus it is coordinate-system independent. The symmetry 
condition (2) of $1 can be written 

RT(v,A)  = R(-r ,L) ,  (A 3 )  

a . R T . b  = b * R  * a  (A 4) 

for any two vectors a and b. Invariant theory (Robertson 1940) tells us that the 
projection of R onto any two vectors a and b must be a function of the invariants of 
a, b,r and I ,  that is 

a . R . 6  = F ( 1 1 , 1 2 ,  ...), (A 5 )  
where the invariants ZI, 12 , .  . . are the scalars that can be formed from the vectors, 
using the cross- and the dot-product, for example r - r, r - b, (a x Y) A and (a  x 6 )  A. 
The most general form of R consistent with (A5) is a sum of all linearly independent 
dyads that can be formed from the unit dyad U and the vectors r and A, where each 
of these dyads multiplies a scalar function of r - r and r - A. The operations by which 
we can form the dyads are the outer-product and the cross-product. Thus we can 
for example form U, Lr, 3, x U and (A x r)r .  Instead of representing R directly by 
these dyads, which corresponds to Batchelor’s (1946) approach, we first form the two 
unit vectors d’)  and e(’) as normalized cross-products as in (8) of 33. R can now be 
represented by the dyads that can be formed from our three orthogonal unit vectors, 
since they span three-dimensional space. The fact that the unit dyad is no longer 
needed once we have our unit vector base, can be seen from the relation 

where the transpose R T  of R is the dyad satisfying 

which holds for any orthogonal unit vector base. Applying condition ( A 3 )  and 
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demanding reflectional symmetry in planes normal to 1, we find the representation 

199 

R = 11R1 + d2)d2)R2 + e(')e(')R3 + ( A d 2 )  +e(2)1)& 
+(Ad') + e(')A)S1 + (d2)e(l) + e(1)e(2))~2, ( A  7 )  

which exactly corresponds to the Cartesian notation (14) of $3. In dyadic notation 
we can write the relations (17)  and (18) as 

and the continuity relation (3) of $1, as 

V * R  = V * R T  = 0. 

Applying this condition to ( A 7 )  and using ( A 8 )  and ( A 9 )  we find 

1 

which constitutes three separate equations that can also be written in the form of 

The advantage of the dyadic representation is that it is more geometrical in 
character than the Cartesian tensor representation, and that the coordinate-system 
independence is totally displayed. From a typographical point of view it is also 
cleaner since no indices are needed. But there is a major drawback of the dyadic 
representation that would have been even more clearly seen if we had represented the 
triple correlations as triads, which of course is possible. This drawback is the lack of 
commutativity, when different operations are to be performed on dyads and triads. 
Taking derivatives will be a heavy task. For this reason and for historical reasons 
we have adopted the Cartesian tensor representation. It is easy to see that there is 
a one-to-one correspondence between the two representations. The choice between 
them is therefore a question of notational convenience. 

( 1 9 ~ - C )  of 93. 

Appendix B. Fourier-Bessel transform 

correlations in terms of Bessel-functions we use the representation 
When expressing three-dimensional Fourier transforms of cylindrical symmetric 

;-n r 2 n  

Jn(X) = - exp (ix cos 4) cos ( n 4 )  d4. 
J o  

For example 

1 1 &(p, z)  exp (-ik .v) d3r 
(2.13 

= 1 (2.13 / m ~ ~ ~ p R l ( p , z ) e x p ( - i k z z ) e x p ( - i k , p c o s ~ ) d ~ d p d z  0 
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where we also have used the fact that R1 is even in z. Transforms of derivatives of 
the correlations can be expressed in terms of higher-order Bessel functions if we use 
partial integration. For example 

J’(R2 + R3)exp(-ik.v)d3r 
(2n)3 

- - /mlI, [ p [2R2 + p (2 + %)] exp (-ik,z - ik,p cos 4) d 4  dz dp 
(2n)3 0 

- - -1 12n p[-pik, cos 4R2 - pik,&] exp (-ik,z - ik,p cos 4) d+ dz dp 
0 

1 

- __ / (2n)2 0 
(B 3) - ~[Rzk,pcos(k,z)Jl(k,p) + &kZ~sin(k,z)J~(kpp)1 dz dp, 

where we have used the properties that R2 and & + 0 as I r I +  co and that R2 is 
even and & is odd in z. In a similar way the integrals of the transfer spectrum and 
the pressure-strain spectrum can be simplified. 

Appendix C. Alternative forms of pressure-strain integrals 
By using the continuity equations (19a-c) and (45a-d), the different terms in the 

single-point solution (69) of the Poisson equation can be expressed in alternative 
forms to that already given in (70a-b), 

= 3 im[I prP5[2zM2 + p(M5 + M6)] + p ~ r - ~ ( 3 p ~  - 2z2)M2 dz dp 

= 3 imlI p2r-7(4~2 - p2)(M5 + M6) - pzr-’(3p2 - 2z2)M3 

pr-’(Ms - Mg) + ~ p r - ~ ( 2 z ~  - 3p2)Ms dz dp. (C 1J) 
= 610 I-, 

The terms in the integrals of the slow pressure-strain are grouped in a way such that 
each of them can be shown to integrate to zero in the isotropic case. 
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